Calculate the cost-effectiveness acceptability curve (CEAC) for a DES model with a PSA result
ceac_des.Rd
Calculate the cost-effectiveness acceptability curve (CEAC) for a DES model with a PSA result
Arguments
- wtp
Vector of length >=1 with the willingness to pay
- results
The list object returned by
run_sim()
- interventions
A character vector with the names of the interventions to be used for the analysis
- sensitivity_used
Integer signaling which sensitivity analysis to use
Examples
res <- list(list(list(sensitivity_name = "", arm_list = c("int", "noint"
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_qalys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_qalys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336
), q_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))
ceac_des(seq(from=10000,to=500000,by=10000),res)
#> # A tibble: 100 × 3
#> # Groups: wtp [50]
#> wtp comparator prob_best
#> <dbl> <chr> <dbl>
#> 1 10000 int 0
#> 2 10000 noint 1
#> 3 20000 int 0
#> 4 20000 noint 1
#> 5 30000 int 0
#> 6 30000 noint 1
#> 7 40000 int 0
#> 8 40000 noint 1
#> 9 50000 int 0
#> 10 50000 noint 1
#> # ℹ 90 more rows